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Abstract 

The Multidisciplinary Optimization (MDO) Branch at NASA Langley Research Center develops new methods and 

investigates opportunities for applying optimization to aerospace vehicle design. This paper describes MDO Branch 

experiences with three applications of optimization under uncertainty: (1) improved impact dynamics for airframes, (2) 

transonic airfoil optimization for low drag, and (3) coupled aerodynamic/structures optimization of a 3-D wing.  For each 

case, a brief overview of the problem and references to previous publications are provided. The three cases are aerospace 

examples of the challenges and opportunities presented by optimization under uncertainty. The present paper will illustrate 

a variety of needs for this technology, summarize promising methods, and uncover fruitful areas for new research. 

 

 
1. Introduction 
 

In 2002, a team of researchers at NASA Langley completed a survey of the state of the art in uncertainty 

quantification (UQ) and in robust or reliability-based design of engineering systems (Zang, 2002). That survey paper 

provides an overview and an extensive reference list that will not be repeated here. The NASA Langley team also initiated a 

research effort called uncertainty-based methods (UBM) and emphasized the need for improved computational and 

experimental methods applied to multidisciplinary aerospace vehicle design problems. One of the areas studied by the team 

members was optimization under uncertainty. The present paper summarizes recent experiences with three separate 

optimization applications. The first application optimizes a simplified airframe finite element model (FEM) for improved 

crashworthiness. The second optimization reduces the drag of an airfoil while maintaining lift and treats the transonic Mach 

number as an uncertain variable. The third application improves the performance of a flexible wing assuming small 

uncertainty in the geometric variables and including constraints on payload, compliance, and trimability. 

The three applications have similarities. Each has a cost function and/or constraints that are sensitive to uncertain 

parameters. All of the design variables are continuous, and the numerical simulations are nonlinear and computationally 

expensive. All three applications show the value of optimization under uncertainty compared with conventional 

deterministic optimization.  

The applications are also different in a number of ways. For example, one has a large number of design variables 

while the others have only a few variables. The objective can be to optimize the expected value of performance or to limit 

the probability of failure. The applications use several different UQ methods and different optimization approaches. The 
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differences in the applications allow the authors to draw general conclusions about the adequacy of existing techniques for 

aerospace applications and to compile a prioritized list of enabling technologies that require future study. 

 
2. Aircraft impact dynamics 
 

The first example of optimization research is motivated by the competing goals of reducing the weight of a small 

aircraft while improving its safety and crashworthiness. One interesting concept is to design the airframe itself to absorb 

some of the energy from impact. This idea is investigated in (Lyle, 2003) using a simplified 2-D beam model and in (Lyle, 

AHS 2003) using a higher fidelity 3-D model. The 2-D model, sketched in Fig. 1, has 166 elements and uses beams and 

lumped masses to capture the basic physics of an aluminum fuselage section that is dropped vertically. Studying the 2-D 

impact dynamics model uncovers both the capabilities and limitations of UBM for high-fidelity crashworthiness 

applications.  

Figure 1. Schematic of the 2-D airframe FEM 

 

A demonstration problem is defined in (Lyle, 2003) to investigate optimization under uncertainty. The design 

variables v and uncertain parameters u are identified in Table 1. The parameters u are normally distributed with mean umean 

and standard deviation uσ = bu − bl( )/ 2 3( ). 
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Table 1. Design variables and uncertain variables 
I/O symbol  

Definition 
 

Mean 
Bounds 

Lower, bl Upper, bu 
v1 Floor Beam Area, m2 3.00e-4 2.42e-4 3.58e-4 
v2 Floor Beam Inertia, m4 4.77e-7 4.48e-7 5.06e-8 
v3 Lower Frame Area, m2 3.50e-4 2.92e-4 4.08e-4 
u1 Yield Strength, Pa 3.50e8 2.92e8 4.08e8 
u2 Impact Velocity, m/s -7.00 -8.15 -5.85 
u3 Lumped Mass, kg 50.0 35.6 64.4 
W Structural Weight, N 136 125 148 
a Acceleration, g 28.1 20.2 39.1 
d Displacement, m -0.228 -0.323 -0.137 

 aallowable 29.0   
 dallowable -0.24   

 

The deterministic optimization, Problem A, is: 

minimize  W 

subject to 
a ≤ a allowable

d ≤ dallowable
         (A) 

 
v lb ≤ vi ≤ vub

u j = umean
 

where a is the maximum acceleration at the selected response location, aallowable is acceleration considered survivable, d is 

the displacement of the floor beam at the monitoring station, and dallowable is the maximum displacement. For example, if the 

clearance between the floor beam and the fuselage is dallowable, then this constraint discourages the optimization routine from 

operating with physically impossible displacements. The nondeterministic optimization, Problem B, is the same as A except 

that the constraint d < dallowable is replaced by a probabilistic constraint Pd ≥ 75% and u j ∈ N umean ,uσ[ ]. 

Optimization Problems A and B were solved by using an approximate analysis to reduce the number of executions 

of the MSC.Dytran finite element code (Anon, 2001). The formulation was implemented by using the iSIGHT commercial 

software package developed by Engineous Software, Inc. (Anon, 2002). The iSIGHT software provides a reliability-based 

optimization approach where the optimization algorithm is the Modified Method of Feasible Directions, the UQ uses first-

order reliability method (FORM), and the approximate analysis uses a kriging method. The approximate models for a and d 

are based on samples of 6 factors at 3 levels and require 51 executions of MSC.Dytran. 

Several commercial and public domain software packages were considered as alternatives to iSIGHT (Lyle, 2003). 

Of the candidates, one or two offered a better selection of UQ tools with better options for describing input distributions 
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and diagnostic printed and graphic output. We chose iSIGHT because we needed optimization, UQ, and approximate 

analysis tools, and we did not find any other software with comparable capabilities. Other strengths of the iSIGHT package 

that are useful for aerospace applications include tools for task monitoring, integrating several disciplinary codes, saving 

input and outputs in a database, and experimenting with various optimization algorithms. 

Iteration number

D
is

pl
ac

em
en

t,
m

.

0 1 2 3 4 5 6 7 8 9
-0.25

-0.24

-0.23

-0.22

-0.21

-0.2

Deterministic
Nondeterministic

constraint violated

 

Figure 2. Impact dynamics optimization results 
 

As seen in Fig. 2, Problem A converges to a solution with less structural weight W and with a displacement d that 

is exactly equal to dallowable. Problem B converges to a solution with increased weight but with a greater probability that the 

calculated displacement is physically possible. The results are summarized in Table 2 and 3. At each solution, approximate 

values of a, and d are confirmed by additional executions of the MSC.Dytran code. Moreover, the final probability of 

success measure is verified by using both FORM and Monte Carlo analyses in the iSIGHT package. 

Table 2. Summary of optimization results. 
 W 

v normalized v original 
Pa Pd 

Initial guess 130.1 (0.1, 0.2, 0.3) (2.54e-4, 4.60e-7, 3.27e-4) .705 .572 

OPT (A) 125.6 (0.0, 0.273, 0.0) (2.42e-4, 4.64e-7, 2.92e-4) .771 .514 

OPT (B) 142.1 (0.0, 0.0, 0.140) (2.42e-4, 4.49e-7, 4.54e-4) .513 .767 

 

Table 3. Comparison of Optimization response with MSC.Dytran computations. 
 a d 

Initial guess 26.87 -0.234 

OPT (A) 26.20 -0.240 

MSC.Dytran (A) 26.37 -0.239 

OPT (B) 29.00 -0.211 

MSC.Dytran (B) 28.31 -0.215 
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Lyle concludes that both Problems A and B have potential pitfalls. Problem A produces a design with low 

structural weight, but this design is adequate in only 50% of the crash scenarios. When mass u3 or impact velocity u2 is 

higher than the mean value, then the floor beam probably impacts the fuselage and the acceleration calculated by 

MSC.Dytran is invalid. Problem B produces a more reliable design, but the analysis required for each iteration is more 

computationally expensive and the design space is more nonlinear; thus, Problem B requires more iterations of the 

optimization process. 

Several lessons were learned from the impact dynamics optimization. First, using an approximate model for UQ 

and optimization is efficient and produces results with acceptable accuracy. However, the approximation is only valid over 

a relatively small range of design variable values. Thus, if any value of vi changes too much, a new set of samples and a 

new approximate model will be required. Second, the computational cost of building the approximate model increases with 

the number of uncertain variables; thus, when a high-fidelity model is optimized, some variable screening technique is 

needed to decide which variables contribute to the uncertainty of the results. Finally, using optimization under uncertainty 

is a good way to avoid nonsensical optimization solutions. In this study, the probabilistic constraint successfully steers the 

algorithm away from solutions where FEM predicts a physically unrealistic response. 

 
3. Airfoil shape optimization 
 

Airfoil shape optimization is an example of robust design rather than reliability-based design. Here the goal is to 

reduce both the mean and the standard deviation of drag as a function of Mach number. The constraints on lift are 

deterministic. This optimization under uncertainty problem is interesting because traditional airfoil shape optimization 

procedures generate misshapen airfoils with off-design performance degradation (Padula, 2002). A research initiative at 

NASA Langley investigated a number of different options for lift-constrained drag minimization in high-resolution design 

spaces (Li, 2004). One winning strategy is called the profile optimization method (POM) because it aims to reduce the drag 

profile over a range of flight conditions while keeping the lift at the target value.  

A robust airfoil shape optimization over a transonic Mach range is demonstrated in (Li, 2003). Airfoil shapes are 

parameterized by B-splines, and a large number of vertical coordinates of the spline control points are used as design 

variables. Transonic airfoil performance is simulated for turbulent viscous flows in the Mach range from M = 0.68 to M = 

0.78. 
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In general, robust optimization can be considered a multiobjective optimization with both the mean and variance 

of a performance measure as the objective functions. From this perspective, we can formulate the shape optimization over a 

Mach range as follows: 

min E cd( ),σ 2 cd( )( ) 

subject to:        (C) 

cl D,α,M( )= c l
*  for M min ≤ M ≤ M max  

where cl and cd are the lift and drag coefficients for a given airfoil, D is the vector of design variables, M is the free-stream 

Mach number, cl
* is the target lift value, α is the angle of attack needed to achieve cl

* at M, and E(cd) and σ(cd) are the 

mean and standard deviation of the drag coefficient with respect to M.  

One could use any standard multiobjective optimization method to find a Pareto solution for Problem C. The 

drawback is that computational fluid dynamics (CFD) solutions for transonic turbulent viscous flows are computationally 

expensive. Thus, accurately predicting the mean and standard deviation of the drag with respect to a uniformly distributed 

random variable such as M is impractical. A natural question is whether one could find reasonable approximations of robust 

solutions when reliable information on E(cd ) and σ( cd ) is not available. Our strategy is to use a few sample Mach points in 

the given Mach range as the design points. However, we do not use a standard numerical optimization procedure. Instead, 

we use the profile optimization procedure to reduce the drag simultaneously and proportionally at the design points, and 

consequently, reduce the drag profile over the whole Mach range. This process results in a simultaneous reduction of the 

mean and variance of the drag over the Mach range. A detailed discussion of the theory and implementation is found in (Li, 

2004). This idea can be summarized by the following POM: 

(1) Select design points M1, M2, …, Mr. 
(2) Evaluate the lift and drag and their derivatives with respect to D and α. 
(3) Find a trust region size for a linear subproblem to achieve simultaneous and proportional drag reduction at all 

design points. 
(4) Compute the least norm solution of the linear subproblem. 
(5) Update the D vector and repeat if necessary. 

 
The linear subproblem mentioned in step (3) is formulated as follows: 

ΔD,Δα i

min
1≤i≤ r
max

cd
predict ΔD,Δα i, M i( )

cd D,α i ,M i( )  

subject to:      (D) 

cl
predict ΔD,Δα i ,M i( )= cl

*
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−Di δ ≤ ΔD ≤ Di δ  

where δ is the scalar that controls the trust region size, ΔD is the change of design vector, Δαi is the change of the angle of 

attack for Mi, and cd
predict,cl

predict
are the linear predictions of the drag and lift corresponding to the modified airfoil shape, 

respectively. We choose the smallest δ such that the optimal objective function value of the above linear subproblem equals 

(1−γ), where γ is the specified drag reduction rate at the design points (ranging from 1% to 4%). 

The POM stated in Problem D is implemented with MPI parallel interface. The implemented research code does 

the following: 

(1) uses 2r computer nodes to compute the lift and drag and their gradients at r design conditions in parallel (i.e., node 

i computes the lift and its gradient at design condition i, and node (r+i) computes the drag and its gradient at 

design condition i, for 1 ≤ i ≤ r); 

(2) extracts geometry, function values, and gradient information from the outputs of the CFD code; 

(3) formulates and solves the quadratic programming problem that produces the least norm solution of the linear 

subproblem mentioned in POM;  

(4) updates the input geometry specification file; and 

(5) repeats these steps for each iteration of POM. 

 
In (Li, 2003), POM is tested on a realistic airfoil design by solving fully turbulent Navier-Stokes equations and the 

corresponding discrete adjoint equations. The initial RAE2822 airfoil is parameterized by 35 B-spline control points, which 

allows a free-form deformation of the airfoil shape during the optimization process. The x-coordinates of the B-spline 

control points are fixed so that the chord length does not change, and the y-coordinates of the top and bottom surfaces are 

used as design variables. Additional geometry constraints are included so that the maximum airfoil thickness does not 

decrease, the thickness at two spar locations is controlled, and the five spline control points near the trailing edge can only 

change as a group. The design points are at M = 0.68, 0.71, 0.74, and 0.76, with cl
* = 0.733. The simultaneous and 

proportional drag reduction rate γ is 3%.  
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Figure 3. Typical drag reduction results for POM 
 

 

Figure 4. Comparison of RAE and optimal airfoils 
 

Fig. 3 shows the drag profiles before and after 10 iterations of POM. Drag counts for the 10th iterate are obviously 

less than those for the original airfoil although both airfoils provide the required lift. Fig. 3 shows that drag is reduced at the 

four design points. More significantly, Fig. 3 shows that drag is reduced at off-design points that are not sampled during the 

optimization strategy. The improvement is greatest at the highest Mach number and more modest below M = 0.73, which 

was the design Mach number for the original airfoil. Fig. 4 shows the difference in shape between the original RAE2822 

airfoil and the optimal airfoil. 

Several valuable lessons were learned during this research (Li, 2004). First, POM can produce fairly realistic 

optimal airfoils. This robust optimization strategy helps to alleviate off-design performance degradation and the efficient 

shape modification leads to fairly smooth optimal airfoil shapes without airfoil smoothing. Second, it is important to have 

relatively accurate gradients of the lift and drag coefficients so that the optimizer is not adversely affected by the noise in 

the gradients. Noisy gradients tend to lead to unrealistic and random changes of the airfoil shape. Once a bump is created on 

the airfoil, the optimizer does not have the ability to remove the bump, and it tends to make the airfoil shape more 
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oscillatory in the following iterations. Third, to make POM a useful tool in real-world design environments, we need to 

incorporate airfoil smoothing, develop more flexible drag reduction strategies while enforcing robust optimization policy, 

use more flexible thickness constraints that allow thickness locations to change during the optimization process, and 

demonstrate the feasibility of POM for 3-D wing design. 

 
4. Aerodynamic/structural wing design 
 

The last example of optimization under uncertainty aims to improve the performance of a 3-D flexible wing while 

taking into account the coupling between the aerodynamic loads and the structural deformation. Geometric uncertainty is 

included by using a first-order second moment (FOSM) statistical approximation to propagate the input uncertainty through 

the coupled CFD and FEM codes. While the FOSM approach would not be sufficiently accurate to characterize the 

uncertainty due to extremely infrequent deviations, it can effectively characterize the effects of inherent fluctuations. As 

such, it is suited to robust design applications such as this wing design problem. 

 

  

Figure 5. Potential 3-D wing design variables 
 

Fig. 5 shows the geometry of the 3-D wing and indicates some potential design variables. The traditional 

aerodynamic variables are the airfoil shape and the wing planform shape; the traditional structural variables are the skin 

thickness, web thickness and truss cross-sectional areas in each of six zones (i.e., Γ1–Γ6). Four design variables are 

identified as being particularly sensitive to anticipated levels of manufacturing uncertainty. These are tr and zr, the 

maximum thickness and camber of the root airfoil section, and Γ1 and Γ2, the structural sizing factor for the two zones near 

the root. To compare optimization with and without uncertainty, we assume the four design variables are statistically 
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independent and normally distributed. For the cases discussed here, a coefficient of variation equal to  was chosen for all 

design variables. 

The optimization problem is stated as: 

Minimize:  − 2L D( )  

subject to:        (E) 

g j +kσ j ≤ 0  for j=1,2,3 

where L/D is the lift to drag ratio of the wing, gj is the jth inequality constraint evaluated at the mean of each design 

variable, σj is the approximate standard deviation of gj, and k is a user-defined parameter that adjusts each constraint to 

achieve a desired probability of satisfaction. The objective function is representative of design cruise conditions for a 

transport aircraft. The three constraints are probabilistic constraints on payload, trim, and compliance requirements. In 

particular, g1 is a lower limit on payload (i.e., the difference between the total lift and the structural weight), g2 is a limit on 

trim difficulty (i.e., the wing pitching moment that can be offset by movement of the tail surfaces), and g3 is an upper limit 

on compliance (i.e., the work performed by the aerodynamic loads to deflect the structure). Bounds on the design variables 

and purely geometric constraints on the leading-edge radius are also added to Problem E. 

One challenging aspect of this research involves integration of disciplinary codes to create the coupled analysis 

(Gumbert, 2002). Gumbert describes the integration process and provides important references. The disciplinary codes are 

executed by a separate driver program and by UNIX scripts. Each code runs independently, some simultaneously on 

separate processors, and the required data transfers between them, also directed by the driver, are accomplished via data 

files.  

The CFD code used for aerodynamic sensitivity analysis was generated by applying the automatic differentiation 

code ADIFOR to produce a relatively efficient, direct mode, gradient analysis code (Bischof, 1996). The surface geometry, 

volume mesh and structural analysis codes were also preprocessed with ADIFOR. The structural analysis code used to 

compute the deflection of the elastic wing was a generic finite element code. Because the elastic deformation was assumed 

to be small, linear elasticity was deemed to be appropriate. At the wing surface (i.e., the interface where aerodynamic load 

and structural deflection information is transferred), nodes of the FEM were assumed to be a subset of the CFD 

aerodynamic surface mesh points. This choice allowed for simplifications in the data transfers and was deemed suitable for 

these initial 3-D robust optimization demonstrations.  
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A deterministic optimization was performed first by setting k = 0 in Problem E. That deterministic result was used 

as the initial design for all robust optimizations. The deterministic optimization process reduced the airfoil section thickness 

tr to reduce the shock strength, thereby reducing the drag and improving the L/D. Consequently, the thinner wing became 

more flexible, which allowed the tip to twist and increased the magnitude of the pitching moment. To satisfy the trim 

constraint, the structural element thickness increased; consequently, the wing became heavier. To satisfy the payload 

constraint, the section camber increased. All these changes in design affect the wing bending but the compliance constraint 

is never active.  

 

Figure 6. Change in constraint values with increased uncertainty in geometric variables 
 

Fig. 6 presents the results for the deterministic and robust optimizations for several values of k. An increase of the 

parameter k can be interpreted as an increase in the specified minimum probability that the constraints are satisfied with 

respect to random inputs. For example, if the output responses have a normal Gaussian distribution and k = 3, then 

g j + 3σ j ≤ 0  implies that there is at least a 99.87% probability that each g j ≤ 0  constraint is satisfied. For k = 1 and k = 2, 

the corresponding minimum probabilities are 84.13% and 97.73%.  

Changes in the constraint boundaries due to changes in k are indicated by circles in Fig. 6. Mean values of the 

constraint function greater (less negative) than each circle would indicate violated robust constraints; that is, the probability 

of the constraint being satisfied would be less than the specified minimum probability. Seemingly small changes in 

minimum probabilities produce substantial changes in the normalized constraint values, which must be accounted for in the 

optimization. The effect on the design variable values is substantial, but the effect on the objective function, and 
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consequently the L/D, is rather small. As with the robust airfoil shape optimization study, it appears that many wing shapes 

will perform well; robust optimization attempts to find that design which performs well assuming manufacturing 

uncertainty. 

We learned several lessons while studying the effect of uncertainty on the design of a flexible wing in transonic 

flow. We conclude that a statistical FOSM method is appropriate to propagate the input uncertainties through the 

multidisciplinary analyses (e.g., CFD for aerodynamics and FEM for structures) to determine effects on output parameters. 

Reference (Gumbert, 2003) used several reliability assessment methods to check the accuracy of the approximate results in 

(Gumbert, 2002). The first derivatives required for the FOSM method can be obtained from automatic differentiation of the 

individual codes used in the analysis. This implementation of the statistical approach is easy to retrofit into gradient-based 

design codes that already use analytical or semi-analytical sensitivity derivatives for optimization. However, our numerical 

studies also suggest that increased input uncertainty or increased reliability requirements have a significant effect on the 

number of active constraints and on the size and shape of the feasible region of design space (Gumbert, 2002). In an 

extreme case, the feasible region can disappear, and it becomes difficult to judge whether the results of the optimization 

process are useful or not. The fact that a deterministic solution exists is no guarantee that a solution exists for the robust 

optimization problem.  

 
5. Concluding remarks 
 

This paper briefly describes three aerospace applications of optimization under uncertainty. Whereas (Zang, 2002) 

outlines the need for all UBM research, this paper focuses on practical implementation issues for robust or reliability-based 

optimization. Our experience with the three applications and our study of the optimization literature leads us to make 

several recommendations for further research. We see the need for: 

(1) Approximation methods for combining expensive physics-based analysis with UBM. 

(2) Multiobjective optimization methods that find designs with the highest probability of success even if there is no 

feasible design space. 

(3) Efficient and validated UBM for coupled, multidisciplinary analysis. 

(4) Methods for including physics-based uncertainty quantification in conceptual design and system risk assessments. 

(5) Ways to exploit multiple-fidelity models to reduce the computational expense of UBM. 

(6) UBM for time-dependant analyses like impact dynamics. 
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This prioritized list of enabling technologies represents the authors’ views of the most pressing issues for application of 

uncertainty-based methods to aerospace vehicle design. 
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